

Military Vehicle Intelligence: Next Generation Electrical Architecture Infrared Microbolometer Night Vision Camera

30 May 2001

 \mathbb{AC}

Mitchell Kozera
National Automotive Center

Tank-Automotive Research, Development & Engineering Center

Next Generation Electrical Architecture (NGEA)

- Purpose To develop dual use electronic architecture that will realize greater functionality, reduced maintenance costs, and reduced development costs
- System Engineering Team
 - NAC
 - Oakland University
 - DaimlerChrysler
 - Lear Corporation
 - Eaton Corporation

NGEA Description

- **Phase 1**: System Design Utilize the System Engineering Process to develop a feasible NGEA design specification.
- **Phase 2**: Subsystem level design specification and on-vehicle diagnostic fault-over demonstration.
- Phase 3: Prototype development and complete System/Component specification. Tech demonstrator of finished NGEA on Jeep and HMMWV platforms.

NGEA Status

- Performance
 - Design specification complete to system level
 - Diagnostic fault-over demo complete
 - Successfully displayed at Convergence conference Oct 1999 and 2001 SAE International symposium
- Cost
 - NAC/Industry Partners: \$2.285 M/\$2.265M

NGEA Schedule

Deliverables and ROI

- NGEA design specification and two demonstration vehicles - HMMWV and 1999 Jeep Cherokee
- Plug and play infrastructure for Army Trucks
- Reduction in O&S and commercial warranty cost (target \$300/vehicle)
- Reduction in development costs (target \$12M)
- No increase in piece costs

NGEA Jeep at Convergence Show

Infrared Microbolometer Night Vision Camera

NAC partnership with BAE Systems, Inc.

Purpose

 To Demonstrate low cost microbolometer thermal imaging device on NAC technology vehicle test bed demonstrator to validate low cost alternative to existing night vision devices

Microbolometer Focal Plane Array

Project Description

- DUAP With BAE Systems (formerly Lockheed Martin) total value \$2.8 M
- Objective to design, develop, and fabricate a low power miniaturized uncooled microbolometer based thermal sensor
- Original program duration 21 months 01/98 to 10/99

Technology Description

- Low power consumption (3.2 watts)
- Small space claim (3.5 in cube)
- 40x30 degree field of view
- Long-range super- sensitive microbolometer sensor
 - Early uses include aviation applications

Microbolometer Schedule

Deliverables and ROI

- 3 Microbolometer sensors for application in Army ground vehicles
- Unit cost little as 1/5 of traditional tracked vehicle mounted systems (\$7000-\$10K).
- With additional development of electronics and optics, price of device could be reduced to the \$2000-\$5000.

Microbolometer Application and Video

